The fractional chromatic number of Zykov products of graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The fractional chromatic number of Zykov products of graphs

Zykov designed one of the oldest known family of triangle-free graphs with arbitrarily high chromatic number. We determine the fractional chromatic number of the Zykov product of a family of graphs. As a corollary, we deduce that the fractional chromatic numbers of the Zykov graphs satisfy the same recurrence relation as those of the Mycielski graphs, that is an+1 = an + 1 an . This solves a co...

متن کامل

The locating chromatic number of the join of graphs

‎Let $f$ be a proper $k$-coloring of a connected graph $G$ and‎ ‎$Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into‎ ‎the resulting color classes‎. ‎For a vertex $v$ of $G$‎, ‎the color‎ ‎code of $v$ with respect to $Pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$‎, ‎where $d(v,V_i)=min{d(v,x):~xin V_i}‎, ‎1leq ileq k$‎. ‎If‎ ‎distinct...

متن کامل

The fractional chromatic number of mycielski's graphs

The most familiar construction of graphs whose clique number is much smaller than their chromatic number is due to Mycielski, who constructed a sequence G n of triangle-free graphs with (G n ) = n. In this note, we calculate the fractional chromatic number of G n and show that this sequence of numbers satis es the unexpected recurrence a n+1 = a n + 1 a n .

متن کامل

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

The fractional chromatic number of triangle-free subcubic graphs

Heckman and Thomas conjectured that the fractional chromatic number of any triangle-free subcubic graph is at most 14/5. Improving on estimates of Hatami and Zhu and of Lu and Peng, we prove that the fractional chromatic number of any triangle-free subcubic graph is at most 32/11 ≈ 2.909.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2011

ISSN: 0893-9659

DOI: 10.1016/j.aml.2010.10.032